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Abstract. We determine the asymptotic level spacing distribution for the Laguerre ensemble 
in a single-scaled interval, (0, s). containing no levels. Ep(0.s) .  via Dyson’s Coulomb-fluid 
approach. For the U = 0 unitary Laguerre ensemble, we recover the exact spacing distribution 
found by both Edelman and Forrester, while for a # 0, the leading t e m  of El(O.s), found 
by Tracy and Widom, are reproduced without the use of the Bessel kemel and the associated 
Painlev6 transcendent. In the same approximation, the next leading term due to a ‘finite- 
temperature’ perturbation (B # 2). is found. 

1. Introduction 

The probability that there are no levels in a scaled interval ( - t ,  t )  (where t is measured with 
respect to the averaged spacing), E(0, t), in a long stack of energy levels of heavy nuclei 
was given by a conjecture of Wigner [I] and was well supported by experimental data [2] for 
systems with timsreversal symmetry. In a series of seminal papers, Dyson [3] introduced a 
new class of random matrix ensembles and determined in the continuum approximation 
(expected to be valid when number of levels, N, is very large) that InEg(0, t )  - 
-(7rZ/4)j3r2 - (1 - p/2)at, using the methods of classical electrostatics, potential theory 
and thermodynamics, for ensembles with unitary (0 = 2), orthogonal (6 = 1) and 
symplectic (p  = 4) symmetries. A term of O(1nt) and a constant missed in the~continuum 
approximation was later discovered by Widom, des Cloizeaux and Mehta, and Dyson [4-8lt. 

Recently, in a remarkable paper, Tracy and Widom [9] showed, in the single-interval 
case., that the logarithmic derivative of the Fredholm determinant of the Bessel Kemel- 
which arises in the scaling limit (with respect to the hard edge density, see [9,10] of the 
unitary Laguerre ensemble-satisfies a Painlev6 V equation, from which the asymptotic 
level spacing distribution can be computed exactly, amongst other quantities of interest 
from the random-matrix point of viewt. 

In this paper we shall employ the continuum approximation of Dyson to calculate the 
level-spacing distribution for the Laguerre ensemble, with p = 2. For ,9 # 2, the spacing 
distribution can be found by a perturbative calculation due to Dyson [3]. 

t In an application of the continuum approximation, the quantity r+dn. 1 )  := E&. f ) /Ep(O,  t )  was dculated. 
where E& I) is the probability that there are exactly n levels contained in the interval (-1, t ) .  with 1 << n << f. 
See [7]. rj (n,  I) is also computed in [SI. As will be seen later, the computation of Eg(O,t), involves Subwction 
of two large terms which are functions of N ind the continuum approximation is not expected to have sufficiently 
fine resolution to determine the constant. 
The Painlev6 V in [9] is reducible to a Painlev6 Ill. 
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From the Brownian-motion model, in the ‘hydrodynamical’ approximation, Dyson [ l  11 
derived an equation satisfied by the non-equilibrium level density u ( x ,  5): 

-u(x, a t) = - a (  fiu(x, t)- E) t > O  a t  ax 
with 

Y(x, t) = -U@) - dyu(y, 5 )  In Ix - yI + - - - ln[u(x, r)] (2 )  

where the fictitious time t pulls the levels towards the observed level density, r (x ) ,  generated 
by the imposed potential u(x) /B = Sdy  r ( x )  In Ix-yI, (as t + CO), that holds the Coulomb 
fluid together. The stationary solution, reached as 5 -+ CO, for the level density satisfies a 
Hiickel-like self-consistent equation, 

B l S  (; :> 

u(x)  - ,3 / dyc(y) In Ix - yI + 1 - - In [u(x)] = A = constant (3) 

with effective temperatute Te a (1 - f i /2 ) .  This, in turn, may be derived from the following 
variational principle: min,,, F[u, PI, with 

( 3 
F I ~ , i c l = B S ~ Y ( x ) a ( x ) - ~ ( S ~ o ( x ) - N )  (4) 

and A = -@ + ( 1  - +4/2), where p is the chemical potential. Therefore the free energy, 
F, at equilibrium, with exactly N levels contained in an interval I is 

dxu(x)ln[u(x)] (5) 

subject to S,dxu(x) = N .  For the Laguerre ensemble, u(x)  = x - ulnx,  x E (0, CO), but 
as we axe using the continuum approximation, an upper-band edge, b E (0, CO) must be 
imposed on the level density to produce a finite number of levels. In the large-N limit, 
the level density is u(x) = (1/2ir)J(4N - x ) / x ,  x E ( 0 , 4 N )  for the unitary case [12,13]. 
This is distinct from the Wigner semicircle law, where u(n) = x2,  x E (-CO, +a). 

2. Asymptotic spacing 

The probability dishibution that an interval (0, a) contains no levels is, by definition, the 
ratio of the partition function where all N levels reside in the complement of (0, a)  i.e. 
(a, b) (where b is the upper band edge and 0 c a c b) to that for which all N levels reside 
in the full interval i.e. (0, b), and is [3] 

lnEg(0,a) =-[F(a,b)-F(O,b)]. (6) 
In the continuum approximation, F is given by (S) ,  where o ( x )  solves (3 ) t .  From 
thermodynamic considerations, since F(a,  b) is the free energy in a ‘constricted’ region, 
we must have F(a,  b) > F(0,  b). We now proceed to solve (3) for ,3 = 2, in the interval 
(U, b). To simplify the mathematics, (3) is converted into a singular integral equation by 
taking a derivative with respect to x ,  and can be solved by a standard method [14]. The 
solution of this equation is 

t For a discussion on the continuum approxidon,  the reader is urged to consult the second paper of [3]. 
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=- a. A straightforward where x E (a. b)  and to maintain positivity we demand that 
calculation supplies the normalization condition, 

We have deliberately left p without setting it equal to 2 in (7) and (8). It is clear from the 
structure of (8) that N, the total number of levels, is almost exhausted by the first term, but 
as to be seen later, the second term cannot be discarded. As we are required to compare 
F(a,  b) with F(0, b), where N is very large, to facilitate the computation we shall evaluate 
instead, F(a, b) in the limits a << b. u / ( b  - a) << 1 and b/(b -a )  - 0(1), thus by-passing 
an independent computation of F(0, b). To evaluate F(a,  b) requires the determination of 
A and the ‘interaction energy’ ~ J ~ d x o ( x ) u ( x ) .  In the limits stated we shall extract the 
very large terms, which are functions of N only and finite terms that are functions of Nu 
only; any remaining terms are therefore negligible in the large-N limit. Note that the very 
large terms are then subtracted according to the definition of Eg(0, a), leaving behind only 
those terms in Nu. 

For the constant A, we send x + b in (3), which gives 

In - - a l n b - a  In(b-a)+-  “J“ -I ( b a a )  - (’) 
~b 

A = a - -  
2 

where 

- - 2 ~ ( 1 - 1 n 2 ) + z f i + . . .  x < < l  (10) 

where F(a,  b, c, x )  &((I, b: c; x )  is the Gauss hypergeometric function. 
As N + 00, but with Nu finite, we find that 

fNA - -NZln(N/e) - faln(16N/e4) + f N a  - $a& ( 1 1 )  

where to capture all the terms in Nu it is essential to use (8) for N. For the contribution 
due to the interaction, we have 

where 

and 

x 
N _  ln(4x) + x lnx + . . . x < 1 .  
.h. 
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With the same considerations, 

f l b d t u ( f )  u ( t ) -  ~ N * - 1 ~ N l n ( 2 / e ' / ~ ) -  ~ a z l n 4 N + f N a - ~ f f ~ + ~ f f 2 1 n ( 4 N a ) .  
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(15) 

Pooling together (11) and (15) we find by subtracting the very large terms 

F ( a ,  b) - F(a << b ,  b)  - Na - zOrl/is;;+ $~~ln(4Nu)  (16) 

which gives 

upon scaling with respect to the hard-edge density, i.e. with the replacement Na --f s/4. 
Before we proceed to give the result for the B # 2 case, we should like to mention that by 

repeating the calculation in the far simpler situation where (Y = 0, (8) can be solved hivially, 
which gives b -U = 4N (for p = 2) and the change in the free energy is equal to Nu or s/4. 
This gives Ez(0, s) = [15,16]. For # 0, B = 2, Tracy and Widom [9], found through 
an asymptotic expansion of a Painlev6 V equation, higher-order terms, in l/$, 1,'s etc, and 
made a conjecture conceming the term independent of st. It was observed in [9] that with 
a = +f, the Bessel kernel reduces to the kernels which arise by scaling into the bulk of the 
spectrum of the Gaussian orthogonal and symplectic ensembles, respectively, provided one 
makes the replacements --f zZt2. It is interesting to see that by approaching the GOE and 
GSE through the 'back door', i.e. using the mapping of Tracy and Widom [9], the Coulomb- 
fluid approach, when applied to the Laguerre ensemble, supplies rather precise information$. 

3. Correction to the free energy when p # 2 

This is simply found by adding the finite-temperature contribution 

ff 
dro(x)In[u(x)] - -In + -1n4Na a < b  - a  =.l 2fi 

8FCa.b) 
(1 - f B )  

to the free energy. 
Collecting the appropriate terms together, we find that 

s 2ff - In Eg(O, s) - - - - 
26 B 

which clearly reduces to (17) when @ = 25, 

t The s-independent constant is Inre, where r ,  = (2n)-apG(1 +U) and G is the Banes G-function. 
t The authors should like to thank Craig Tracy for bringing out this point, Specifically. In a2?) = 
In Da(i) ,- -a2t2/4 F x r p  - Q In(ni). The quantities D+(t) can be found in 1171. 
8 In order to facilitate comparison with [16], we make the unique identification; S = 4s/pz. Equation (19) with 
U = 1 agrees up to a proportional Constant with the asymptotic expansion of (2.30) of [E]. Funhemore. (19) 
with with (I = 7812. again agrees with the asymptotic expaasion of equation (2.32) of 1161. In addition, by 
putting p = 1. U = -4 in (19) we recover exactly the 0 = I value of (2.32) of [HI, provided in all h e  cases 
the unique identification is made. 
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4. Conclusion 

We should l i e  to mention that by treating the constraint, i.e. (S), more accurately, it 
should be possible to produce the higher-order correction terms 1 I&, 1 Is, . . . mentioned 
previously. However, the computation would become exceedingly complicated and clearly 
the methods of Tracy and Widom [9] have much to be desired. 

The above calculations suggest, upon comparison with exact results, that the Coulomb- 
fluid approach is quite robust and may shed light on the level-spacing distribution of the 4- 
Laguerre ensemble, which arises in the context of eleclronic transport in disordered systemst, 
with the potential 

m 

u ( x , q ) = C 1 n [ 1 + ( 1 - 4 ) x q n ]  4 ~ ( 0 , 1 )  (20) 
"=O 

which reduces to the ordinary Laguerre potential as 4 + 1-; u ( x ,  1-) = x .  We leave as a 
future project the determination of the level-spacing distribution with u(x: 4). 

Note added After this manuscript was completed we received a preprint on the level- 
spacing distribution of the Laguerre ensemble from Peter Forrester. We would like to thank 
the author for sending us the preprint. Equation (2.2612) of the preprint is a special case of 
(19) of our letter (or = integers) provided the identification of the parameters in footnote 5 
(page 4) is made. 
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